Differential conditions for constrained nonlinear programming via Pareto optimization
نویسندگان
چکیده
We deal with differential conditions for local optimality. The conditions we derive for inequality constrained problems do not require constraint qualifications and are the broadest conditions based only on first and second order derivatives. A similar result is proved for equality constrained problems, although necessary conditions require regularity of the equality constraints.
منابع مشابه
Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملConstrained Nonlinear Optimal Control via a Hybrid BA-SD
The non-convex behavior presented by nonlinear systems limits the application of classical optimization techniques to solve optimal control problems for these kinds of systems. This paper proposes a hybrid algorithm, namely BA-SD, by combining Bee algorithm (BA) with steepest descent (SD) method for numerically solving nonlinear optimal control (NOC) problems. The proposed algorithm includes th...
متن کاملSuperlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کاملInversion of Gravity Data by Constrained Nonlinear Optimization based on nonlinear Programming Techniques for Mapping Bedrock Topography
A constrained nonlinear optimization method based on nonlinear programming techniques has been applied to map geometry of bedrock of sedimentary basins by inversion of gravity anomaly data. In the inversion, the applying model is a 2-D model that is composed of a set of juxtaposed prisms whose lower depths have been considered as unknown model parameters. The applied inversion method is a nonli...
متن کاملVoltage Stability Constrained OPF Using A Bilevel Programming Technique
This paper presents a voltage stability constrained optimal power flow that is expressed via a bilevel programming framework. The inner objective function is dedicated for maximizing voltage stability margin while the outer objective function is focused on minimization of total production cost of thermal units. The original two stage problem is converted to a single level optimization problem v...
متن کامل